LLVM/CLANG the new C-compiler

A new star shines on the sky

Overview of CLANG, its code quality tools,
the GPL-free license model
and its implementation for Microware 0S-9

Kei Thomsen, MicroSys Electronics GmbH

Introduction

C/C++ compilers have long been available for various processors and operating
systems. Some compilers are very old, but maintained and up to date. Others are
simply old compilers. So it was time to launch a new modern compiler, one that has
been created with the latest programming methods and can do everything from the
beginning that was cumbersomely added to the old compilers. Is it just a new
compiler? Then it is uninteresting and boring. If it also includes code analysis tools
and other tools for improving code quality, it is unrivalled in its value. For OS-9 a new
compiler with the latest C/C++ standards is needed.

With LLVM/CLANG something completely new has been created.

The master thesis in 2000 by Chris Lattner and Vikram Adve at the University of lllinois
on a Low Level Virtual Machine (LLVM) quickly turned into a completely new
approach to a compiler for many current processor architectures. The name "Low
Level Virtual Machine" sometimes causes confusion. LLVM is the name of the actual
project for the LLVM-IR intermediate language, the LLDB debugger, the C and C++
libraries and the CLANG compiler. CLANG (C-Lang or "klen", both is okay) is the
frontend for many programming languages, especially C and C++. In 2005 Apple
became aware of the CLANG and hired Chris Lattner as project manager to further
develop this software technology. Since July 2008 the LLVM is now the standard
compiler for Apple's development environment Xcode. Other sponsors are
Qualcomm, Google, Fastly, ARM, MicroSoft, Intel, Cisco, Synopsys, Facebook, HSA
Foundation, Huawei, Sony, Mentor and many more
(https://llvm.org/foundation/sponsors.htmil).

What makes the CLANG so special? First the CLANG was used more as a frontend or
driver plugin to the GCC and later it became a complete replacement for the GNU
compiler. Since then, the compiler has been able to reach its full potential and shows
how valuable a software development coordinated from the ground up is. The
LLVM/CLANG has always placed great emphasis on a consistent style in the LLVM
coding standard, code quality, repository and code reviews; unlike the GCC, which
was created in 1987 and has been continuously expanded ever since. This left quite
a mess in the code at times. For example, the global addressing of variables in GCC is
created in about 40-70 places of the backend and the machine descriptions, whereas

https://llvm.org/foundation/sponsors.html

in CLANG it is created in exactly one function of a class. The LLVM/CLANG and its tools
are based on the most modern methods and technologies from the very beginning
and thus perform many actions much more efficiently and coordinated. Hence, it is
not surprising that today's standards like C11, C++17 and C++2x are not only created
with the GCC, but increasingly also with the LLVM/CLANG.

Shortened compile time

The actual compile process is different between a classic compiler like GCC and the
newer CLANG. The classic compiler takes the C/C++ file, inserts the header files and
first generates an internal format from it. This result is then optimized and converted
by a backend to target processor assembler. Depending on the compiler, it can
happen 2-3 times that the intermediate data is written as a file or pipe and read in
again. This means that a lot of time is spent formatting the output and
scanning/parsing the input. The result is the assembler file. This file is read by an
assembler in a further step and converted into an object file (.0), which the linker
then assembles with other object files and libraries to form a program. Formatting
and re-reading the output takes about 1/4 of the total compile time (Figure 1).

=

.c .c .c .C £ .c
.cpp h .cpp h cpp cpp 4o cpp 43 .cpp 4
L2 v s v ¥ v v v £'s
Lokale

[Compiler J [Compiler] [Compiler] [Compiler] [Compiler J [Compiler]_Optimierung

— (LLVM-IR)

LLVM-link
Optimizer & Globale
Codegenerator Optimierung

Linker .—‘\Lihﬂ

Programm

Figure 1: Classical Compiler with assembler Figure 2: CLANG with alternative ByteCode Linking

To speed up and simplify this, the CLANG takes a different approach. An internal
LLVM-IR format is also generated, but it is not output or formatted, but passed
internally as an object/structure up to the object file (.0). This saves a lot of runtime,
because at least the formatting and parsing of the assembler file is not necessary.
Instead, a lot of information (debug, sections, types, etc.) are passed on directly,
which up to now only appeared in the assembler files as elaborate additional
information. Of course, an output can be forced at any point of the compile process,
e.g. to continue working with byte code (LLVM-IR) or assembler code.

Performance improvement by linking on a higher level

Another big plus is the alternative of being able to link several sources and libraries
together on the LLVM-IR level and then have them optimized as a whole. This allows
small functions from other source files to be "inlined" directly. A feature that can
improve the performance of programs significantly, because the optimization is done
over the whole program and not only over the single source files (Figure 2). A very
nice paper about this can be found at "TU-Dresden LLVM". This LLVM-IR is like the
0S-9 UCC compiler with I-Code linking, therefore nothing really new for 0OS-9
developers, but for all others.

Attractive licensing model

What makes the LLVM/CLANG especially interesting for companies is the licensing.
Many companies shy away from the GNU Public License (GPL) and would like to do
without GNU compilers, tools and libraries because they are afraid of not fulfilling the
requirements and thus becoming suable. The LLVM/CLANG environment offers a
much more open and company-friendly licensing model. Originally it was the
University of Illinois/NCSA Open Source License (UI/NCSAOSL), in 2019 it changed to
Apache 2.0 License with LLVM exceptions:

Apache 2.0 License with LLVM exceptions (simplified summary)

e You may freely use, modify and distribute software under this license in any
environment

o A copy of the license must be included in the package.

e Changes to the source code of the software under the Apache license do not have
to be returned to the licensor.

e Own software using software under the Apache License does not have to be
under the Apache License.

Original text: https://www.apache.org/licenses/LICENSE-2.0 plus exception from
http://llvm.org/docs/DeveloperPolicy.html#tnew-llvm-project-license-framework

In order to become independent of the GPL problem with a C and C++ library, the
LLVM has also been used to create the libc (MUSL), libc++, OpenMP, polly and other
libraries from scratch. Under this license also the own LLD linker and the LLDB
debugger are available. The LLVM libraries can also be used with the GCC, so they are
not directly bound to the CLANG.

Easy changeover from GCC to CLANG

Since the CLANG has almost all command-line options like the GCC, including the -f...
and -m... options, switching from the GCC to the CLANG is quite easy. Just replace the
gcc or cc with clang in the Makefile. For ./configure scripts, you only need to set the
environments CC=clang and CXX=clang++ and the Makefile for the CLANG is created.
This makes the changeover particularly easy.

Changeover from UCC to CLANG

https://www.apache.org/licenses/LICENSE-2.0
http://llvm.org/docs/DeveloperPolicy.html#new-llvm-project-license-framework

As seen, the CLANG uses the same options as the GCC. These are totally different to
the UCC options. Here some work is needed if using makefiles. For example, the -d is
now -D, -v is now -l and the library naming is different. Also the file endings have
changed from the classical 0S-9 naming to standard UNIX/Linux naming. The object
format is no longer compatible, therefore old libraries cannot be used as binary.

Quality and speed comparison

At this point | would like to refrain from a speed and quality comparison between
GCC and CLANG. The GCC and CLANG sources change several times a day, because
both compilers are constantly being worked on and therefore changes occur all the
time. Compared to the UCC, the output of the CLANG is typically between 5 and 20%
faster.

Supported CPU-Architectures

The fact with the CLANG is that it does not support all previously known CPU
platforms, but focuses on current CPUs, such as X86, AMDGPU, ARM, Hexagon,
NVPTX, PowerPC, Sparc, SystemZ, XCore, MIPS, eBPF, RISCV. There used to be a
backend for older CPU architectures like the 68k years ago, but currently there is no
support anymore for it in the master repository.What is special about the CLANG is
that it has all or alternatively only a selection of CPUs in a single binary and can also
generate the output for different operating systems. You always use exactly the same
compiler for all your CPUs and operating systems, so you do not have to deal with
different compilers. In one configuration, code can be compiled for PowerPC, ARM
and X86 for Linux, Windows, Free/Open/NetBSD and 0S-9 for example, all with a
single CLANG binary. It only depends on which libraries and headers were built and
installed. This makes it a self-hosted and cross compiler in one.

Meanwhile even the Linux kernel can be compiled not only for ARM and since CLANG-
9 also for X86. https://www.golem.de/news/compiler-llvm-9-baut-x86-linux-kernel-
1909-143986.html .

Tools for high code quality
Static Code Analysis

With the CLANG, a static code analysis tool has been built directly into the compiler.
The advantage is: you don't have a compiler X and a static code analysis tool Y, where
you must tell Y how X works, which defines are sets, where the headers come from,
etc. Within CLANG, the compiler uses exactly the same settings and code parts as the
Analysis Tool, because the Analyzer is part of the compiler. The Analyzer knows
exactly how the compiler processes certain things and can therefore perform very
precise analyses. This is especially important when using the CLANG as a cross
compiler for other CPU platforms and even another operating system (e.g. the RTOS
Microware 0S-9), because here completely different header files are used than with
Linux or Windows. By specifying -analyze -analyzer-output html the CLANG is
instructed not to compile as usual, but to subject the source code to a static code

https://www.golem.de/news/compiler-llvm-9-baut-x86-linux-kernel-1909-143986.html
https://www.golem.de/news/compiler-llvm-9-baut-x86-linux-kernel-1909-143986.html

analysis and write the result to a directory <sourcefile>.plist. For each hint a separate
HTML file is created with the problem found and its conditions. It is even easier with
the scan-build tool. This is a Python script that changes the environment CC and CXX
for the common build tools and thus additionally calls the CLANG with the analysis
function. So you get the usual compiler output of "your" compiler and also the
information of the code analyzer. In addition, the scan-build generates an index.html
with a summary of all findings and includes a stylesheet and JavaScript so that the
display in the browser is formatted correctly.

scan-build make -j 4
starts Makefile (4 parallel runs), additionally to the static code analyzer.

scan-build ./configure
scan-build —keep-cc make
starts configure with the analyzer

scan-build gcc -O3 myprog.cpp -0 myprog
regular compile by hand (here with GCC) using the scan-build.

See http://clang-analyzer.llvm.org/ for more information about the analyzer.

In the following example, for "libedit"

scan-build ./configure
scan-build —keep-cc make -j 6

a result list is created (Figure 3). 29 problems were discovered, of which 4 use-after-
free positions were selected here. It is very nice to see that the analysis is not limited
to one function only, but is also detected beyond subfunctions. Whether one follows
up on the messages now or trusts that this case will never occur after all, must be
considered on a case-by-case basis.

http://clang-analyzer.llvm.org/

libedit - scan-build results X | +

&« =2 C @ @ fileytmp/scan-build-2019-09-25-083122-27038-1/index.html o @ W% N @ =

libedit - scan-build results

User: kei@fedora25-vbox
Working Directory: /home/kel/analibedit
Command Line: make -| 6

ece version for OS-9 based on ELLCC 2017-08-23 (hitp:/elice.org) based on clang version 10.0.0 (hitpszigithub.com/Iivm/livm-project

Cluoies 21508 16323920d50d4a0d2037c6e8db27106756)

Date: Wed Sep 25 08:31:22 2019

Bug Summary
Bug Type Quantity Display?
All Bugs 29 [
APIL
Argument with ‘nennull” attribute passed null 1 [

Dead store
Dead assignment 18 O
Logic error

Dangerous construct in a viorked process 1

Memory error

Memory leak 4 J
Use-after-free 4 im
Security
Potential insecure implementation-specific behavior in call viork' 1 J

Reports
Bug Group Bug Type v File Function/Method Line Path Length
Memory error Use-after-free sre/history.c history_def_clear 592 15 View Report
Memory error Use-after-free sre/history.c history_def_enter 551 18 View Report
Memory error Use-after-free sre/history.c history_def_clear 592 15 View Report
Memory error Use-after-free src/history.c history_det_enter 551 19 View Report

Figure 3: Overview of the static code analysis for libedit

The message in this example was viewed, discussed and decided by two of us for
about 1/2h, yes this could really happen (Fig. 4). We did not pursue whether it could
also occur in connection with the calling library. Here is an example of how the
analyses look like. In Figure 4 on the left you can click backwards through the
conditions starting from "15 Use of memory after it is freed" as the last entry.

history.c x |+ history.c x |+

<« c m_ @ Fley/ftmp/scan-build-2018-09-; - @G » = &« [CIEH) @) file:/ftmpyscan-build-2019-09-25-08312
= 475 | /* history def delete():
— 476 * Delete element hp of the h list
477 7
583 | /* history_def clear():

478 /* ARGSUSED */

584 * Default history cleanup function 479 | static void
585 =/ 480 history_def_delete(history_t *h,
586 static void 481 TYPE(HistEvent) *ev _ attribute_
587 history_def_clear(void *p, TYPE(HistEvent) *ewv) 482 | { . . .
seB | { 483 HistEventPrivate *evp = (void *)&hp-=ev;
) . - 484 if (hp == &h->list)
589 history t *h = (history t *) p;
590 8 + Assuming the condition Is false —
591 while (h-=list.prev !'= &h-=list) g
6+ Loop condition is true. Entering loop body — l 8+ Taking falss branch ~ |
485 abort();
486 if (h->cursor == hp) {
. + Loop conditien is true. Entering loop boedy — '
4 10+ Assuming 'hp' is not equal to field "cursor —+
592 history def delete(h, ev, h->list.prev); ’

7+ Calling 'history_def_delete’ = ' . + Taking faise branch -~ J

487 h-=cursor = hp-=prev;

488 if (h-=cursor == &h->list)
13 « Returning; memory was released via 3rd parameter — 189 h-=cursor = hp-=next;
’ 439 }
491 hp->prev-=next = hp->next;
15 « Use of memory after it is freed 492 hp->next->prev = hp->prev;
/ 493 h_free(evp->str);
593 h->cursor = &h->list; 494 h_freelhp);
594 h-=eventid = 0;
12« Memory is released —
595 h-=cur = 8; —
596 | } 435 h->cur--;
597 296 |}

Figure 4: Detailed information in the browser about a detected problem.

Sanitizer

Further help is provided by the Sanitizer in the compiler. This is nothing new and is
also available in GCC, but this is hardly known to the general public. Sanitizers are
additional code parts that are inserted during compilation to perform various checks.
There are different types of address, thread, memory or undefined behavior
sanitizers, all of which are designed to help you identify different problems in the
program that you might not easily come across or even know exist. Information about
this in https://clang.llvm.org/docs for the different sanitizers. Implementation and
examples for using with 0S-9 should follow later this year.

Summary

The CLANG compiler with its complete toolchain is a really good replacement for the
GNU compiler and now also for UCC 0S-9 application. It has been developed
according to the latest methods, is used by the very big players and masters the latest
standards in C and C++. The faster processing saves time when compiling and at the
same time it offers a lot of possibilities for stress-free use due to its more open
license. Its built-in static code analyzer provides a cost-effective method for checking
the source code.

My tip: just try the CLANG, it's worth it! Especially the static code analyzer can be
really helpful to find and avoid errors an to be more productive.

/

Sources

The LLVM Dragon logo is © Apple Inc.
The detailed information in this text can be found on llvm.org and clang.llvm.org.

LLVM Coding Standard: https://llvm.org/docs/CodingStandards.html

TU-Dresden LLVM: https://tu-
dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien studium/dateien le
hstuhlseminar/vortraege lehrstuhlseminar/folder-2012-11-09-
8491578029/LLVM.pdf?lang=de

Author

Dipl.Ing. (FH) Kei Thomsen has 31 years of experience in the field of embedded RTOS
programming. Since 1997 he is responsible for the operating system Microware OS-
9 as developer, support and trainer. One focus are hardware-related developments
for customer-specific products based on PowerPC, ARM and X86 CPU architectures.

Contact Information:

Kei Thomsen, thomsen@microsys.de
MicroSys Electronics GmbH

D-82054 Sauerlach, Muehlweg 1,
www.microsys.de

Microware 0S-9: Background

Since February 2013 the RTOS Microware 0S-9 is owned by Microware LP
(https://microware.com), a partnership of three companies, MicroSys, Freestation
(Japan) and RTSI (USA).

Microware LP actively continues the development of 0S-9. Recent enhancements
provide support for e.g. Arm® Cortex® A8, A9 and A53/72 based CPUs.

MicroSys in Sauerlach near Munich takes care of customers in Europe and provides
technical support, consulting and development services.

https://llvm.org/docs/CodingStandards.html
https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/folder-2012-11-09-8491578029/LLVM.pdf?lang=de
https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/folder-2012-11-09-8491578029/LLVM.pdf?lang=de
https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/folder-2012-11-09-8491578029/LLVM.pdf?lang=de
https://tu-dresden.de/ing/informatik/ti/vlsi/ressourcen/dateien/dateien_studium/dateien_lehstuhlseminar/vortraege_lehrstuhlseminar/folder-2012-11-09-8491578029/LLVM.pdf?lang=de
https://microware.com/

