
• T OOlS & SOFTWARE

How to achieve fastest system startup

sequences with your embedded system
By Kei Thomsen, MicroSys

This article discusses how
to achieve fast startup times,

especially in view of different
operating systems Iike a general

purpose OS or RTOS. Additionally
an overview is given on boot media

and their effects on startup behavior,
together with practical measurements.

• Ta achicvc quick boot timings with complex
embedded systems, sound knowledge about
the internals, the archilccture of the operating
system und their interaction with the hardware
are required. Smaller rcal·time operating sys­
tems are a perfeer means 10 meel such requirc­
ments. Thc)' are specifically designed 10 control
precisely the timing behavior of an embedded
system and the)' are c1carly arranged and con­
figurable. Additionali)' smaller engineering
teams are not overwhelmed by complexity and
they can keep canlrol of their development
process more casH)'.

By the configurability of aRTOS, the fune­
tionality of the boot sequellce can be opti­
mized aeeording to the given hardware design.
Time-consuming load processes of hundreds
of drivers, libraries or system code which
might not even havc been used are avoided.
On the other hand, compared to more com­
plex and feature-rich general purpose OSs for
embedded systems like Linux or Windows
variants, a more limited feature set has to be
taken into aeeounl. Other aspects influenc­
ing system startup timings are hardware ini­
tializing funclions and the boot media and
method the operating systems are loaded
from . Fast boot is another term to express a
quick start of a system from power-on or resel
to show at least a system prompt on a screen
with loaded operating system, or have a win-

Oc!ober 2014

•

,

dow opened for the first user interaction. The
timings to gel a system up and running vary
strongly by nature of the system, application
and target market. A Windows desktop user
might be used to waiting a couple of minutes
before he can use his system. whereas in many
deepl)' embedded environments the device is
required to boot up in fractions of a second. A
first conclusion is that for some applications
a minutes- Iong startup sequence can be toler­
ated. while in others it is a must to restart the
system in an instant. If time-critical functions
nccd to be considered rehlIed 10 the startup
behavior, the complete system design from
component 10 system software level (inc1ud­
ing operating system) has to be the right fit
for that. Secondly the media the boot software
is loaded from has to be selected thoroughly.
Flash. SO & CF Cards, rotaling media or a
network connection offer b}' nature different
timings and have a strong influence on the
cost structure of a system as weil. Especially
for deeply embedded systems, longevity of
parts supply and maintainabilit'}' might have
an influence as well. As a short summary, fast
boot has many aspects and a precise defini­
tion of it is not that easy. To be able to have
a more defined basis for comparisons we will
discuss the results of experiments we did on
an LMX 53 ARNI based plalform supporting
different typica l boot environments and oper­
ating systems. GeneratJy we differentiate two

46
~&ECE

different types of operating system. On one
hand the standard OSs Iike Linux and Win­
dows and on other hand real-time operating
systems. Linux. and Embedded Linux-Sys­
tems, representing standard OSs, are generally
complex. have an extensive kernei, including
man)' extensions. and the full functionality is
merely seen by experts. Booting a Linux sys­
tem means first loading and initializing the
kernel and drivers, and then starting a large
number of system services and additiona l
programs. Here again it needs a 101 of knowl­
edge to understand the function and usage of
the services and programs. Optimizations to
achieve faster boot and startup times are not
as simple as they should to be. Another aspect
is optim izing a system after the fu nctionality
has been defined and implemented, but the
startup time still requires 10 bc tuned. The
question here is how to assure the warranted
system characteristics and properties by opti­
mizing the system?

To face this problem right at the begin­
ning, a very practical method is to plan and
implement a test system based on minimal
OS funclionality. Avoid all the nice-to-have
features and develop the opt imal functions
step·by-step. The required know-how and the
additional deve!opment resources are to be
considered aeeordingly. If 'it becomes obvi­
ous under the project work that new kerne!

NORFI.sh NANDFI.sh

NANO Controller

8

5 - 8, - -~~~-::
Sizc (lypical) 1 - 32GB 32MB-32 2-64MB Vi -4 OB

GB

PiicelMB Very low cos1 Expcns~vc Low cost

OS Startup (Sec .) 1,5 2.4 0,3 2,4

Pro Simple 10 Simple 10 Extremely fast, Dirccl soldered chips
rcplace replace direct with high capacily

Contra Mostly only Mostly only Lcss capncity. Dcfccls by wriLing,
consumcr consumcr file system is difficult 10 rcplacc
quaJity quality not common (MLC&SLC)
(MLC) (MLC)

Driver cffan

Rccommcndntion No fi le system

Table 1. ComparisotJ 0/ different storage media jflfluellcillg system slarlltp limes

features or system se rvices are required. then
thC}' can be added and ac tivated later. Alterna·
live appronches might be to add smalilibraries
provid ing similar [unclions Iike a full system
service solution. Wh)' eare)' a full OpenSSL
if only a MDS is needed. which can be pro­
vided by small library. The system start of a
Linux system depends on the applied Linux
distribution. e.g. LTIB. Debian or ELDK. For
optimizations of the startup sequence. spe­
cial knowledge of the methods used by the
selected distribution is ncedcd. lhere are
many startup methods available. for example.
SysV-init. aSD-init, busybox. launchd, runit.
systemd, upstart, just to name a few.

Totally different approaches are uscd in small
and c1early defined real-time operating sys­
tems like Microware 05-9, QNX, Vx\oVorks
and others. Here. a special kernel is used
exactly for the chosen cpu. The operating sys­
tem functions for components Iike the MMU.
cache. interrupt and exception handling etc.
are precisely adapted and are open for opti­
mizations. The hardware functions can be
tuned with software drivers exactly to match
the required timings. O nly the prc-planned
and desired fu nclion is integrated into the
operating system to avoid all time-consuming,
unnecessary and redundant program code.
Such a e1early defined system is much smaller
and starts faster by factors than a full blown

all inclusive system. Thus. real-time operating
systems have. due to their slimness. configu­
rability and c1earness. the capability to provide
the fastest startup limes compared to stan­
dard operati ng systems. Embedded RTOSs
offer the beauty that one need not to be a
dedicated expert to understand the function­
ali ty of each single element in the operating
system, its internal ass ignments and depen­
dencies. A RTO$ like e.g. 0$-9 is based on a
clear architecture with a modular process and
thread structure that is fully understandable
by adeveloper and accordingly manageable.
For example, modules like kernei. pcf. epi­
cirq or sppro lOOOe are exactly defincd in thcir
function and do exist apart from each other.
That means they can be loaded and addcd on
demand to support system optimizations. The
naming convcntion hclps to understand the
function of program modules and thus adds
to the darity of the system architecture. 1his
results in a system structure whereby only
required program func tions are selected and
in use. This approach is straight forward, com­
prehensivc and much easier to validale and
test. In contrast, the reverse process applied
for standa rd operating systems, to remove
functions to opt imize, possibly with a trial and
error method, implies many risks, especial1y
due to unknown or damagcd system depen­
dencies. If we are talking about real or deeply
embedded systems, thcn thc boot medium

47

TOOLS & SOFTWARE .

6t'IZnet.eu
... Intemet

for evelything

Hardwired TCP/IP
Chips & Modules

Simple
Hardwired TCP/IP
+ MAC + 101100 PHY
A single chip Internet I/F
for any 8 to 32bit MCU.

Stable
No OS and no Interrups
needed. Free driver and
application source code
available.

Secure
Stack in Gate-Logic and
separated buffer.
Linux drivers available.

~ electronica
~ A6.579

meet us in Munich
11th - 14th November

6t'IZnet.eu
... Internet {or everything

WIZnet Europe GmbH
Edisonstrasse 15
68623 Lampertheim
+49-6206-94623-0
info@wiznet.eu
http://www.wiznet.eu

October 20 14

•

• TOOLS & SOFTWARE

is generally not a hard disko Operating sys­
tems are loaded out of non-rotating memory
media Iike NOR- cr NAND-flashes and SDI
~SD/CF cards. The boot medium strongl)'
influences the timing of the system startup
scquence. What are the ditferences between
the types and resulting performance etfects?
The NOR-flash is a fast memory, linearly
mapped into the address space. Depending on
the hardware design it is 8/16/32/64 bits wide
attached to the CPU with fixed defined access
speed. It is the fastest t)'pe of all. NOR-nash
types offer the beauty that the boot-monitor
(e.g. U-Boot) is running directly out of it. An
initial load cr copy process into RAM is not
required. Most RTOSs fcr example. are able
to run directly out of flash, wh iCh adds addi­
tional system safet)'. lhe RAM is free for data,
whereby the OS and application still resides
in the flash, hence these important code ele­
ments cannot be damaged by a program error.

NOR-flashes however offer compared to
NANO-flashes far less memory capacity
per chip space and are much more expen­
sive. Because of timt they lose attraction in
cost-sensitive designs, but nevertheless they
are still used in environments requiring fast­
est startup times. The typical data rate is 10-80
MByte/sec and allows fastest access to boot
and program code. Yet NAND-nashes are
block-oriented devices and therefore not lin­
early seen in the address space.

Accesses to these memories have to be orga­
nized by dedicated drivers. Oue to the organi­
zation and the 8-bit interface they are slower
than the dassical NOR-flashes. NANO-flash
components are much cheaper compared
to NOR-flash memory and have their main
market in consumer electronic de\·ices. Thus
the NANO technology is very attractive for
embedded designs, but especially in indus­
trial rugged designs exposes the application
to issues like long term availability or product
lifecycle management.Similar considerations
appl)' to SPI-NOR-nashes, which are NOR
flashes connected via aserial protocol inter­
face (SPI). Oue to its non-linear organization,
the program code must first be transferred

• AdaCore: conlerence on reliable,
safe and secure software

AdaCore announced that, along with partner
Altran, it will be a major sponsor of the inau­
gural High Integrity Software Conference tak­
ing place in Bristol, UK on Oetober 23rd 2014.
HIS 2014 is a brand new UK conference for
sharing information about key challenges and
recent developments in high integrity soft­
ware engineering.

News 101980

October 2014

•

from NAND-nush or SPI-NOR-flash to RAM
berore the U-Boot or the OS can be executed.
A typical transfer rate here is 1O-14MBytel
sec. Similar to NANO are CF cards. CF cards
are typically read by the boot monitor in PIO
mode, ut typiculI)' 5MB/sec. SD/~SD cards
are connected with a 4-bit wide structure and
offer with >20MB/sec transfer rate the best
performance of the block-oriented medium.
As an example, we have mea(ured the startup
times from reset to completely running an
application for different environments using
the RTOS Microware OS-9 loading a con­
trol application: NOR-f1ash, 0.3sec; SO-Card,
l.5sec; NANO-flash, 2.4sec.

Another strong influence on the boot timing
is the use of a compressed or uncompressed
OS image. 111e decompression time must
be compared with the load time for a larger,
uncompressed image and properly analyzed
for an optimization. Another decision crite­
ria is keeping the kernel smalI, because the
OS drivers (with OMA and IRQ handling) are
faster than the Booter (simple polling drivers),
so timt the components are loaded faster. Or
using the variant "as we are already loading,
load everything in one chunk': As the boot
devices are too different in read performance,
there is no generic statement possible, which
way to go to get the most promising approach.

As conc1uded earlier, the initial system design
has a strong influence on the boot perfor­
mance, and if there are options on different
boot media available, individual tests are
required to find the optimum. Several tests
showed up to a 25% time difference, e.g. for
a Linux System a speed-up from 24 to 17 sec­
onds, by using an uncompressed image (-3
seconds) loaded from SD Card (-4 seconds)
instead of compressed image on NANO flash.
As already described, the different boot media
have strong effects on the timing of a system
start. Other annoying thieves of time are the
initialization sequences of Ethernet and USB
interfaces. For initialization Ethernet com­
munication starts an auto negotiation on the
ph)'sical la)'er (PHY). T)'picall)' this takes
between 1 and 3 seconds, if a cable is con-

P.r.o.dud.News
• ETAS debuts at InnoTrans
ETAS will be making its first-ever appearance
at InnoTrans, the International Trade Fair for
Transport Technology, where the company
will present innovative solutions for develop­
ing, testing. and integrating real-time-capable
software designed for rail vehicles. ETAS RTA
Solutions represent professional, made-to-or­
der consulting and software engineering for
real-time applications.

News 101905

48

nected. Without a cable connected, it waits for
a timeout, e.g. 5 seconds before it proceeds. If
this happens within the kernel startup process,
where no process scheduling is possible and
nothing else can run at the same time, then it
delays the system start until the action is fin­
ished. To achieve better boot results, it is by
far better to start the network at a later point,
so that it can run with normal scheduling in
the background. To initialize the USB com­
munication the USB bus must be scanned
for the connected topology with aB the hubs
and devices. This might take up 10 seconds
with nearly no CPU usage. It makes sense to
start the USB stack as early as possible, so that
it can run in the background during other
devices and services are starting

Most embedded systems (at least during the
development) have a serialline for the system
start message and the shell prompt. As the
serial line is attached to a PC by a terminal
program, a first and very simple tool to ana­
lyze the startup timings is the terminal pro­
gram itself. Most of the terminal programs
(like TeraTerm) can use timestamp logging.
Each received line gets a timestamp on arrival.
Here we see the duration between the mes­
sages. Most times the message itself teils a lot
about where it comes from. Example:

[Wed Sep 05 13:53:07.491 2012} NAND read:
dcvice 0 offsct Ox200000, size Ox400000

[Wed Sep 05 J3:53:0B.1712012} 4194304 bytes
read: OK

Ir explains that reading 4MB from the NANO
flash takes about 0.7 seconds. To get a mean­
ingful time stamping, the baud rate should be
as high as possible (>=115200Baud). Hint:
As USB serial adapters are buffering the data
internal and sending them as bulk blocks to
the system, it can happen that multiple lines
are getting the same time stamp. It is of advan­
tage to use the internal serial line of the PC
(if it is still available), to achieve a better time
resolution, as the internal serial line direcdy
reads the data without an)' dela)' like the USB
has due to the buffering. _

• N.A.T. : lirmware v2.15 lor NAT-MCH
and NATview v2.13 now avaHable

N.A.T. make version 2.15 ofthe firmware for
the NAT-MCH-Family of products as weil as
the improved and extended version 2.13 of
the JAVA based GUI NATview available to
customers. The NAT-MCH family ofproducts
consists of: NAT-MCH, NAT-MCH-PHYS
und NAT-MCH-PHYSBO.
News 101892

